4. Quantum Phase
Estimation



Quantum Phase Estimation

* Quantum Phase Estimation (QPE) is one of the most widely used subroutines in
quantum algorithms.

* Setup: We have a unitarygand its eigenstate | n), with an eigenvalue e

* QPE is an algorithm to measure 6,, . 0= eze,,lm>
- —
* QPE serves two purposes in Quantum Simulation.

° iti_mitiwnd state energy.

* Ground state preparation
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How QPE works

* There are two ingredients.
1. Phase kick-back

'—/——\I
2. Quantum Fourier Transform
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Phase kickback

* Simplest case: Suppose we have an ability to compute a function f(x) € {0,1} .
We wish to implement a unitary transformation:

|x) = (=1)/W]x).
* How would we do this? -
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Phase kickback

* More general case: Suppose we have an ability to implement a unitary U. We wish
to implement

|x> — ei9x|x>,

where e is one of the eigenstates of U .
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* How would we do this? S
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Phase kickback, in superposition

p |
. Instead of beginning with |x), suppose we begin in the Z B | x).
x=0
* After applying the phase kickback operation, we get a “momentum eigenstate.
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Quantum Fourier Transform

* Quantum Fourier Transform can be performed using O(nz) one- and two-qubit gates.
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Quantum Phase Estimation in a Nutshell

In the infinite-precision limit, QPE performs a non-destructive measurement in the
eigenbasis of U . - Inverse ’

\/‘\
Procedure: Phase kickback in uniform superposition -> QFT.
Often the cost of QFT is subleading compared to the implementation of U .
The dominant cost is 2" times the cost of implementing controlled-U .
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Controlled-U

* The cost of implementing controlled-U is comparable to the cost of implementing U.
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Applications
\ny

* We already established that e " can be implemented efficiently.

* Thus, controlled-e " can be also implemented efficiently.

* Therefore, we can compute the energy of H in time O(1/€), where € is the precision.
* This is better than the naive approach of O(1/¢?) .

e .
* This can lead to a huge difference in quantum chemistry applications.
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Eigenstate assumption

* We assumed that we have access to an eigenstate.

* But didn’t we already say that preparing an eigenstate (e.g., ground state) is hard in
general?

* More realistically, the initial state will be generally of the following form:
V 1 — Pn

v) = ) + /Pl m)
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QPE, applied to non-eigenstate

* Suppose we begin with the following state:
-t

v) =D aln). v=e™
* If we apply QPE (in the infinite precision limit), we will measure |n) with probability
o, ™ | —

* Repeating this many times, you can get a histogram of eigenstates, each labeled by
different phases. & ¢ ¢ ---

* To prepare an eigenstate corresponding to the phase e 0, , repeat QPE until you

measure 0, . If you succeed, halt. =
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But we rarely even know 0, . ..

* Sometimes we do, e.g., models for which we know the ground state is exactly zero. In
that case, we simply repeat measuring 6, until we get 8, = 0.

* More generally, we don’t know the exact ground state energy. In that case, we simply
repeat the measurement many times and pick the smallest Hn. This will be our
“‘guess” for the ground state energy.

* If the overlap with the true ground state is «, the probablllty we fail to get the correct
ground state energy after m repetition is (1 — |a| )"
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Application: Ground state preparation

1. Repeat QPE many times to get a good guess on the ground state energy.
2. Repeat QPE many times until you measure your guess of the ground state energy.

3. Done.

* Obviously, this works well only if we can create some state with nonzero overlap with
the ground state.



* QPE is very useful for
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Summary | v

** energy estimation
FJ

g round state preparation

* QPE cost

v l[gtimes Hamiltonian simulation cost for a unit time.
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